Stochastic calculus on Wasserstein spaces

Shizan Fang Université de Bourgogne

18th Workshop on Markov Processes and Related Topics, Tianjin, August 2, 2023 This talk is based on a joint work with Hao Ding and Xiangdong Li.

I will not give a survey on the development of the whole topic, apart from well-known pioneer works by Y. Brenier, R. McCann, F. Otto, J. Lott, K.T. Sturm, L. Ambrosio, I only cite here the following papers from which I've learnt a lot.

• Songzi Li and Xiang-dong Li, W-entropy formulas and Langevin deformation of flows on the Wasserstein space over Riemannian manifolds, arXiv:1604.02596v1.

• Wei Liu, Liming Wu and Chaoen Zhang, Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equations. *Comm. Math. Phys.* 387 (2021), 179-214.

• Feng-Yu Wang, Diffusions and PDEs on Wasserstein Spaces, *arXive: 1903.02148v2*, 2019.

Framework

Let M be a connected compact Riemannian manifold, of the distance d_M , with the measure dx such that $\int_M dx = 1$. As usual, we denote by $\mathbb{P}_2(M)$ the space of probability measures on M, endowed with the Wasserstein distance W_2 defined by

$$W_2^2(\mu_1,\mu_2) = \inf \Big\{ \int_{M imes M} d_M^2(x,y) \, \pi(dx,dy), \quad \pi \in C(\mu_1,\mu_2) \Big\},$$

where $C(\mu_1, \mu_2)$ is the set of probability measures π on $M \times M$, having μ_1, μ_2 as two marginal laws. It is well known that $\mathbb{P}_2(M)$ endowed with W_2 is a compact space. In this work, we will be concerned with the subspace $\mathbb{P}_{2,\infty}(M)$ of measures having positive smooth density. For the tangent space $\overline{\mathbf{T}}_{\mu}$ of $\mathbb{P}_2(M)$ at μ , we adopt the definition given by L. Ambrosio and all, that is,

$$\bar{\mathbf{T}}_{\mu} = \overline{\left\{\nabla\psi, \ \psi \in \mathcal{C}^{\infty}(\mathcal{M})\right\}}^{L^{2}(\mu)},$$

the closure of gradients of smooth functions in the space $L^2(\mu)$ of vector fields on M: they used absolutely continuous curves to unify different types of curves in $\mathbb{P}_2(M)$.

A curve $\{c(t); t \in [0,1]\}$ in $\mathbb{P}_2(M)$ is said to be absolutely continuous if there exists $k \in L^2([0,1])$ such that

$$W_2(c(t_1), c(t_2)) \leq \int_{t_1}^{t_2} k(s) \, ds, \quad t_1 < t_2.$$

For such a curve, there exists a Borel vector field Z_t on M in $L^2([0,1] \times M)$ such that the continuity equation holds

$$\frac{dc_t}{dt} + \nabla \cdot (Z_t c_t) = 0$$

The uniqueness of solutions to above equation holds if $Z_t \in \overline{\mathbf{T}}_{c_t}$ for almost all $t \in [0, 1]$. We say that Z_t is the intrinsic derivative of $\{c_t\}$ and denote it by

$$\frac{d^{\prime}c_{t}}{dt}.$$

We will also use constant vector fields V_{ψ} on $\mathbb{P}_2(M)$. More precisely, for $\psi \in C^{\infty}(M)$, we consider the ODE

$$\frac{dU_t}{dt} = \nabla \psi(U_t), \quad U_0(x) = x,$$

and let $c_t = (U_t)_{\#}\mu$ with μ given. In this case, $\frac{d^{I}c_t}{dt} = \nabla\psi$. We say that a functional \mathcal{F} is derivable along V_{ψ} if

$$(\overline{D}_{V_{\psi}}\mathcal{F})(\mu) = \left\{ \frac{d}{dt} \mathcal{F}((U_t)_{\#\mu}) \right\}_{t=0}$$
 exists.

The gradient $\bar{\nabla}\mathcal{F}(\mu) \in \bar{\mathbf{T}}_{\mu}$ exists if $(\bar{D}_{V_{\psi}}\mathcal{F})(\mu) = \langle \bar{\nabla}\mathcal{F}, V_{\psi} \rangle_{\bar{\mathbf{T}}_{\mu}}$.

Here are usual functionals considered in literature, see for example monographs by Villani, Ambrosio and all.

1) Potential energy functional. $F_{\varphi}(\mu) = \int_{M} \varphi \ \mu(dx)$, for $\varphi \in C^{2}(M)$.

2) Internal energy functional. Let $\chi : [0, +\infty[\rightarrow] - \infty, +\infty]$ be a proper, continuous convex function. The internal energy \mathcal{F} is defined as follows

$$\mathcal{F}(\mu) = \int_M \chi(\rho(x)) \, dx, \quad \text{if } d\mu = \rho \, dx,$$

and $\mathcal{F}(\mu) = +\infty$ otherwise. Two important examples are $\chi(s) = s \log(s)$ and $\chi(s) = \frac{s^m}{m-1}$ for m > 1.

3) Interaction energy functional. Let $W: M^2 \rightarrow]-\infty, +\infty]$ be a l.s.c function, we define

$$\mathcal{W}(\mu) = \int_{M \times M} W(x, y) \mu(dx) \mu(dy).$$

Internal energy functional \mathcal{F} plays a particular role. However for $\chi(s) = s \log(s)$,

 $\mu \to \mathcal{F}(\mu)$ is not continuous.

We need the following explicit expression (see Villani or Ambrosio)

Theorem

For $\chi \in C^2(\mathbb{R}^*)$ such that $|\chi(s)| + s|\chi'(s)| + s^2|\chi''(s)|$ is bounded over [0, 1], and $d\mu = \rho dx$,

$$(\bar{D}_{V_{\psi}}\bar{D}_{V_{\psi}}\mathcal{F})(\mu) = \int_{\mathcal{M}} \tilde{\chi}'(\rho) (\Delta \psi)^2 \rho^2 \, d\mathbf{x} - \int_{\mathcal{M}} \tilde{\chi}(\rho) \langle \nabla \psi, \nabla \Delta \psi \rangle \, \rho \, d\mathbf{x},$$

where $\tilde{\chi}(s) = \chi'(s) - rac{\chi(s)}{s}$. And

$$(ar{D}_{V_\psi}\mathcal{F})(\mu) = -\int_M (\chi'(
ho)
ho - \chi(
ho))\,\Delta\psi\,dx$$

SDE on $\mathbb{P}_{2,\infty}(M)$

f

Given a family of vector fields $\{A_0(t, \cdot), A_1(t, \cdot), \ldots, A_N(t, \cdot)\}$ on M, and $B_t^0 = t$ and (B_t^1, \ldots, B_t^N) a BM on \mathbb{R}^N , how to understand the following SDE on M

$$\circ d_t X_{t,s} = \sum_{i=0}^N A_i(t, X_{t,s}) \circ dB_t^i, \quad X_{s,s}(x) = x ?$$

The above equality formally holds in the tangent space $T_{X_{t,s}}M$. $\{X_{t,s}, t \ge s\}$ is a solution to SDE if for any $f \in C^2(M)$, it holds

$$F(X_{t,s}) = f(x) + \sum_{i=0}^{N} \int_{s}^{t} (\mathcal{L}_{A_{i}(u)}f)(X_{u,s}) dB_{u}^{i}$$

 $+ \frac{1}{2} \sum_{i=1}^{N} \int_{s}^{t} (\mathcal{L}_{A_{i}(u)}^{2}f)(X_{u,s}) du,$

which simply comes from: $d_t f(X_{t,s}) = \langle \nabla f(X_{t,s}), \circ d_t X_{t,s} \rangle$.

Now what happens in $\mathbb{P}_{2,\infty}(M)$? Let $\{\phi_0, \phi_1, \ldots, \phi_N\}$ be a family of functions on $[0, 1] \times M$, smooth enough in $x \in M$. In this talk, ∇ always denotes the gradient operator on M. Consider the following Stratanovich SDE on M:

$$dX_{t,s} = \sum_{i=0}^{N} \nabla \phi_i(t, X_{t,s}) \circ dB_t^i, \quad t \ge s, \quad X_{s,s}(x) = x.$$

Let $d\mu = \rho \, dx$ be a probability measure on M, we set $\mu_t(\omega) = (X_{t,0}(\omega))_{\#}\mu$. Let $\varphi \in C^2(M)$. First using Itô formula to $\varphi(X_{t,0})$, then integrating the two hand sides respect to $d\mu$, we have

$$\circ d_t F_{\varphi}(\mu_t) = \sum_{i=0}^{N} \left(\int_{M} \langle \nabla \varphi, \nabla \phi_i(t, \cdot) \rangle \ \mu_t(dx) \right) \circ dB_t^i$$
$$= \sum_{i=0}^{N} \langle V_{\varphi}, V_{\phi_i(t, \cdot)} \rangle_{\bar{\mathbf{T}}_{\mu_t}} \circ dB_t^i.$$

We say that the intrinsic Itô stochastic differential of μ_t , denoted by $\circ d_t^I \mu_t$, admits the following expression

$$\circ d_t' \mu_t = \sum_{i=0}^N V_{\phi_i(t,\cdot)} \circ dB_t^i.$$

Recall that $ar{
abla}F_arphi=V_arphi$; then $\circ d_tF_arphi(\mu_t)$ can be written in the form

$$\circ d_t F_{\varphi}(\mu_t) = \langle \bar{\nabla} F_{\varphi}, \ \circ d_t^{\prime} \mu_t \rangle_{\bar{\mathbf{T}}_{\mu_t}},$$

symbolically read in the inner product of $\bar{\mathbf{T}}_{\mu_t}$. In Itô form:

$$d_t F_{\varphi}(\mu_t) = \sum_{i=0}^N \langle \bar{\nabla} F_{\varphi}, V_{\phi_i(t)} \rangle_{\bar{\mathbf{T}}_{\mu_t}} dB_t^i + \frac{1}{2} \sum_{i=1}^n (\bar{D}_{V_{\phi_i(t)}}^2 F_{\varphi})(\mu_t) dt,$$

where $ar{D}^2_{V_{\phi_i(t)}}F_{arphi}$ denotes the second order derivative.

Theorem

For any internal energy functional \mathcal{F} with χ satisfying above conditions, we have

$$d_t \mathcal{F}(\mu_t) = \sum_{i=0}^N \langle \bar{\nabla} \mathcal{F}, V_{\phi_i(t)} \rangle_{\bar{\mathbf{T}}_{\mu_t}} dB_t^i + \frac{1}{2} \sum_{i=1}^N (\bar{D}_{V_{\phi_i(t)}}^2 \mathcal{F})(\mu_t) dt.$$

Now having these results in hand, we say that the stochastic process $\{\mu_t; t \ge 0\}$ solves the following SDE on $\mathbb{P}_{2,\infty}(M)$.

$$\circ d_t^I \mu_t = \sum_{i=0}^N V_{\phi_i(t)}(\mu_t) \circ dB_t^i, \quad \mu_0 = \rho \, dx.$$

11

Regular curves, parallel translations on $\mathbb{P}_{2,\infty}(M)$

J. Lott introduced the Levi-Civita covariant derivative $\bar{\nabla}_{V_{\psi_1}} V_{\psi_2}$ and obtained the expression:

$$\langle \bar{\nabla}_{V_{\psi_1}} V_{\psi_2}, V_{\psi_3} \rangle_{\bar{\mathbf{T}}_{\mu}} = \int_{\mathcal{M}} \langle \nabla_{\nabla \psi_1} \nabla \psi_2, \nabla \psi_3 \rangle \, \mu(dx).$$

Let

$$\Pi_{\mu}: L^{2}(M, TM; \mu) \rightarrow \overline{\mathbf{T}}_{\mu}$$

be the orthogonal projection; then

$$\left(\bar{\nabla}_{V_{\psi_1}}V_{\psi_2}\right)(\mu) = \Pi_{\mu} \left(\nabla_{\nabla\psi_1}\nabla\psi_2\right).$$

For $\mu \in \mathbb{P}_{2,\infty(M)}$ with $d\mu = \rho \, dx$, $\rho > 0$, we denote by Δ_{μ} the Witten Laplacian: $\Delta_{\mu} = \Delta + \langle \nabla \log \rho, \nabla \cdot \rangle$ and $\operatorname{div}_{\mu}(Z) = \operatorname{div}(Z) + \langle \nabla \log \rho, Z \rangle$, then

$$\Pi_{\mu}(Z) = \nabla \Delta_{\mu}^{-1} \big(\operatorname{div}_{\mu}(Z) \big).$$

Now let $\{c_t\}$ be a curve in $\mathbb{P}_{2,\infty}(M)$ defined by a flow of diffeomorphisms $X_{t,s}$ associate to ODE:

$$dX_{t,s} = \nabla \phi_t(X_{t,s}) dt, \quad t \ge s, \quad X_s(x) = x,$$

with $c_t = (X_{t,0})_{\#}(\rho \, dx)$. Let $\{Y_t; t \in [0,1]\}$ be a family of vector fields along $\{c_t; t \in [0,1]\}$, that is, $Y_t \in \overline{\mathbf{T}}_{c_t}$. Suppose there are smooth functions $(t,x) \to \Phi_t(x)$ and $(t,x) \to \Psi_t(x)$ such that

$$\frac{d^{\prime}c_{t}}{dt}=V_{\Phi_{t}},\quad Y_{t}=V_{\Psi_{t}}.$$

J. Lott obtained that if $\{Y_t; t \in [0,1]\}$ is parallel along $\{c_t; t \in [0,1]\}$, then $\{\nabla \Psi_t; t \in [0,1]\}$ is a solution to the following linear PDE (Lott equation)

$$\frac{d}{dt}\nabla\Psi_t + \Pi_{c_t} \Big(\nabla_{\nabla\Phi_t} \nabla\Psi_t \Big) = 0.$$

We can explicit the orthogonal projection Π_{c_t} in the case $M = \mathbb{T}$. A function v on \mathbb{T} is the derivative of a function ϕ if and only if $\int_{\mathbb{T}} v(x) dx = 0$. The derivative of ϕ on \mathbb{T} is denoted by $\partial_x \phi$. Let $\mu \in \mathbb{P}_{2,\infty}(\mathbb{T})$ with $\rho = \frac{d\mu}{dx} > 0$. Let $\partial_x \phi = \Pi_{\mu}(v)$; then for any function f,

$$\int_{\mathbb{T}} \partial_x f \, v(x) \rho(x) \, dx = \int_{\mathbb{T}} \partial_x f \, \partial_x \phi \, \rho(x) \, dx.$$

This implies that $\partial_x(v\rho) = \partial_x(\partial_x\phi \ \rho)$, so that for a constant K,

$$\mathbf{v}
ho = \partial_{\mathbf{x}}\phi\,
ho + \mathbf{K} \quad \mathrm{or} \quad \mathbf{v} = \partial_{\mathbf{x}}\phi + \frac{\mathbf{K}}{
ho}.$$

Integrating the two hand sides over \mathbb{T} yields $K = \frac{\int_{\mathbb{T}} v(x) dx}{\int_{\mathbb{T}} \frac{dx}{\rho}}$. Then

$$\Pi_{\mu}(\mathbf{v}) = \mathbf{v} - rac{\int_{\mathbb{T}} \mathbf{v}(x) dx}{\int_{\mathbb{T}} rac{dx}{
ho}} \cdot rac{1}{
ho}.$$

We put

$$\hat{\rho} = rac{1}{\left(\int_{\mathbb{T}} rac{dx}{
ho}
ight)
ho}.$$

Note that $\int_{\mathbb{T}} \hat{\rho} \, dx = 1$. We will use Π_{ρ} instead of Π_{μ} . Then

$$\Pi_{\rho}(v) = v - \left(\int_{\mathbb{T}} v(x) dx\right) \hat{\rho}.$$

Let $\phi_t \in C^{\infty}(\mathbb{T})$ and (X_t) be the flow associated to $\frac{dX_t}{dt} = \partial_x \phi_t(X_t)$ and $c_t = (X_t)_{\#}(\rho dx)$. Set $\rho_t = \frac{dc_t}{dx}$ the density. Let $g_t \in C^2(\mathbb{T})$ such that $\int_{\mathbb{T}} g_t(x) dx = 0$. Then $\{g_t; t \in [0, 1]\}$ is a solution to Lott equation if

$$\frac{dg_t}{dt} + \Pi_{\rho_t} \Big(\partial_x g_t \, \partial_x \phi_t \Big) = 0.$$

or

$$\frac{dg_t}{dt} = -\partial_x g_t \,\partial_x \phi_t + \left(\int_{\mathbb{T}} \partial_x g_t \,\partial_x \phi_t \,dx\right) \hat{\rho}_t.$$

Put $f_t = g_t(X_t)$. Then

$$\frac{df_t}{dt} = \left(\int_{\mathbb{T}} \partial_x g_t \, \partial_x \phi_t \, dx\right) \hat{\rho}_t(X_t).$$

Remark that

$$\int_{\mathbb{T}} \partial_{x} g_{t} \partial_{x} \phi_{t} dx = -\int_{\mathbb{T}} g_{t} \partial_{x}^{2} \phi_{t} dx$$
$$= -\int_{\mathbb{T}} \frac{g_{t} \partial_{x}^{2} \phi_{t}}{\rho_{t}} \rho_{t} dx = -\int_{\mathbb{T}} g_{t}(X_{t}) \left(\frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\right) (X_{t}) \rho dx.$$

Then f_t satisfies the following equation

$$\frac{df_t}{dt} = -\left(\int_{\mathbb{T}} f_t \ \frac{\partial_x^2 \phi_t}{\rho_t}(X_t) \rho \, dx\right) \hat{\rho}_t(X_t).$$

Define $\Lambda(t, f) = -\left(\int_{\mathbb{T}} f \ \frac{\partial_x^2 \phi_t}{\rho_t}(X_t) \rho \, dx\right) \hat{\rho}_t(X_t).$ Then
 $\frac{df_t}{dt} = \Lambda(t, f_t).$

Lemma

There is a constant C_{ϕ} only dependent of ϕ such that

$$||\Lambda(t,f) - \Lambda(t,g)||_{L^2(
ho \, dx)} \leq C_\phi \, ||f - g||_{L^2(
ho \, dx)}, \quad t \in [0,1].$$

Proof. Note that

$$\int_{\mathbb{T}} \left(\frac{\partial_x^2 \phi_t}{\rho_t}\right)^2 (X_t) \rho \, dx = \int_{\mathbb{T}} \frac{(\partial_x^2 \phi_t)^2}{\rho_t} \, dx \le ||\partial_x^2 \phi_t||_{\infty}^2 \int_{\mathbb{T}} \frac{dx}{\rho_t},$$

and
$$\int_{\mathbb{T}} \hat{\rho}_t (X_t)^2 \rho \, dx = \left(\int_{\mathbb{T}} \frac{dx}{\rho_t}\right)^{-1}; \text{ it follows that}$$
$$\int_{\mathbb{T}} \left|\int_{\mathbb{T}} f \, \frac{\partial_x^2 \phi_t}{\rho_t} (X_t) \rho \, dx\right|^2 \hat{\rho}_t (X_t)^2 \rho \, dx \le ||\partial_x^2 \phi_t||_{\infty} ||f||_{L^2(\rho \, dx)}^2$$

and global Lipschitz condition holds.

By classical theory of ODE, for $f_0 \in L^2(\rho \, dx)$, there is a unique solution f_t to above Equation. Set

$$g_t = f_t(X_t^{-1}).$$

We check that g_t is a solution to Lott Equation. Finally

Theorem

For any $g_0 \in \overline{\mathbf{T}}_{\rho dx}$ given, there is a unique solution $g_t \in \overline{\mathbf{T}}_{\rho_t dx}$ to parallel translation equation such that $\int_{\mathbb{T}} |g_t|^2 \rho_t dx = \int_{\mathbb{T}} |g_0|^2 \rho dx$ for any $t \in [0, 1]$.

Stochastic parallel translations

Lott equation in determinist case

$$\frac{d}{dt}\nabla\Psi_t+\Pi_{c_t}\Big(\nabla_{\nabla\Phi_t}\nabla\Psi_t\Big)=0,$$

becomes

$$\circ d_t(\nabla \Psi_t) = -\Pi_{\mu_t} \Big(\nabla_{\nabla \phi_i} \nabla \Psi_t \Big) \circ dB_t$$

where μ_t is a stochastic regular curve and B_t a Brownian motion. We will not discuss general situation, but only the case $\mathbb{P}_{2,\infty}(\mathbb{T})$. Consider SDE on \mathbb{T} ,

$$dX_t = \partial_x \phi_t(X_t) \circ dB_t.$$

Let $d\mu = \rho \, dx$ and $\mu_t = (X_t)_{\#}\mu$; set $\rho_t = \frac{d\mu_t}{dx}$. Suppose that $\{\partial_x \Psi_t; t \in [0, 1]\}$ is a solution of parallel translations:

$$d_t\partial_x\Psi_t = -\prod_{
ho_t} \left(\partial_x^2\Psi_t \ \partial_x\phi_t
ight) dB_t + \left(rac{1}{2}R_t^{\Psi_t} - rac{1}{2}S_t^{\Psi_t}
ight) dt.$$

Let $f_t = \partial \Psi_t(X_t)$. Then by Kunita-Itô-Wentzell formula, we get

$$\begin{aligned} d_t f_t &= -\left(\int_{\mathbb{T}} \partial_x \Psi_t \, \partial_x^2 \phi_t \, dx\right) \hat{\rho}_t(X_t) \, dB_t \\ &- \frac{1}{2} \Big(\int_{\mathbb{T}} \partial_x \Psi_t \, \partial_x^2 \phi_t \, dx\Big) \, (\partial_x^2 \phi_t)(X_t) \hat{\rho}_t(X_t) \, dt \\ &- \frac{1}{2} \Big(\int_{\mathbb{T}} \partial_x \Psi_t \, \partial_x \big(\partial_x^2 \phi_t \, \partial_x \phi_t\big) \, dx\Big) \hat{\rho}_t(X_t) \, dt \\ &+ \frac{3}{2} \Big(\int_{\mathbb{T}} \partial_x \Psi_t \, \partial_x^2 \phi_t \, dx\Big) \Big(\int_{\mathbb{T}} \partial_x^2 \phi_t \, \hat{\rho}_t \, dx\Big) \hat{\rho}_t(X_t) dt. \end{aligned}$$

We have

$$\int_{\mathbb{T}} \partial_x \Psi_t \, \partial_x^2 \phi_t \, dx = \int_{\mathbb{T}} f_t \times \frac{\partial_x^2 \phi_t}{\rho_t} (X_t) \, \rho \, dx,$$
$$\int_{\mathbb{T}} \partial_x \Psi_t \, \partial_x \big(\partial_x^2 \phi_t \, \partial_x \phi_t \big) \, dx = \int_{\mathbb{T}} f_t \times \frac{\partial_x \big(\partial_x^2 \phi_t \, \partial_x \phi_t \big)}{\rho_t} (X_t) \, \rho \, dx.$$

We introduce two notations

$$a_t = rac{\partial_x^2 \phi_t}{\rho_t}(X_t), \quad b_t = rac{\partial_x (\partial_x^2 \phi_t \, \partial_x \phi_t)}{\rho_t}(X_t).$$

Then $\{f_t; t \in [0,1]\}$ satisfies the following equation

$$d_t f_t = -\left(\int_{\mathbb{T}} f_t a_t \rho dx\right) \hat{\rho}_t(X_t) dB_t - \frac{1}{2} \left(\int_{\mathbb{T}} f_t a_t \rho dx\right) \left(\hat{\rho}_t \partial_x^2 \phi_t\right)(X_t) dt - \frac{1}{2} \left(\int_{\mathbb{T}} f_t b_t \rho dx\right) \hat{\rho}_t(X_t) dt + \frac{3}{2} \left(\int_{\mathbb{T}} f_t a_t \rho dx\right) \left(\int_{\mathbb{T}} \partial_x^2 \phi_t^2 \hat{\rho}_t dx\right) \hat{\rho}_t(X_t) dt = \Lambda_1(t, f_t) dB_t + \Lambda_2(t, f_t) dt.$$

As in above section,

$$egin{aligned} &||\Lambda_1(t,f)-\Lambda_1(t,g)||_{L^2(
ho dx)}+||\Lambda_2(t,f)-\Lambda_2(t,g)||_{L^2(
ho dx)}\ &\leq C_\phi\,||f-g||_{L^2(
ho dx)}. \end{aligned}$$

By standard Picard iteration or by SDE on Hilbert spaces, there is a unique solution $\{f_t; t \in [0,1]\}$ to above Equation. Define $g_t = f_t(X_t^{-1})$. Remark that no SDE directly express X_t^{-1} .

Theorem

Suppose that
$$\int_{\mathbb{T}} g_0(x) dx = 0$$
, then for any $t \in [0, 1]$,
 $\int_{\mathbb{T}} g_t(x) dx = 0$.

Proof. Let
$$\tilde{K}_t = \frac{d(X_t^{-1})_{\#}(dx)}{dx}$$
; then by Kunita,

$$ilde{\mathcal{K}}_t = \exp\Bigl(\int_0^t (\partial_x^2 \phi_s)(X_s) \circ dB_s\Bigr).$$

Note that
$$\int_{\mathbb{T}} g_t(x) dx = \int_{\mathbb{T}} f_t \tilde{K}_t dx$$
. We check that $\circ d_t \int_{\mathbb{T}} f_t \tilde{K}_t dx = 0$.

Combining all above results, finally we get

Theorem

Let $\partial_x \Psi_t = g_t$. Then for $\mu = \rho \, dx$ and $\mu_t = (X_t)_{\#}(\rho dx)$, $\{\partial_x \Psi_t; t \in [0,1]\}$ is the parallel translation along the stochastic regular curve $\{\mu_t; t \in [0,1]\}$, that is, $\partial_x \Psi_t \in \overline{\mathbf{T}}_{\mu_t}$ and

$$\int_{\mathbb{T}} |\partial_x \Psi_t|^2 \, \mu_t(dx) = \int_{\mathbb{T}} |\partial_x \Psi_0|^2 \, \rho dx, \quad t \in [0, 1].$$

Brownian motion paths on $\mathbb{P}_{2,\infty}(\mathbb{T})$ and parallel translations along them.

Now let $\phi_{2k-1}(x) = \frac{\sin(kx)}{k}$ and $\phi_{2k}(x) = \frac{-\cos(kx)}{k}$. Consider a sequence of independent real BM $\{B_k; k \ge 1\}$.

For $N \ge 1$, let X_t^N be the flow associated to

$$dX_t^N = \sum_{k=1}^N \frac{1}{\alpha_k} \Big(\partial_x \phi_{2k-1}(X_t^N) \circ dB_{2k-1}(t) + \partial_x \phi_{2k}(X_t^N) \circ dB_{2k}(t) \Big),$$

 $\mu_t^N = (X_t^N)_{\#}(\rho dx)$, and $\{\partial_x \Psi_t^N; t \in [0,1]\}$ parallel translation along $\{\mu_t^N; t \in [0,1]\}$. Then letting $N \to +\infty$, $X_t^N \to X_t$, $\mu_t^N \to \mu_t$ with $\mu_t = (X_t)_{\#}(\rho dx)$, and

$$\partial_x \Psi^N_t \ \sqrt{\rho^N_t} \quad \text{converges to} \quad \partial_x \Psi_t \ \sqrt{\rho_t} \quad \text{in } L^2(dx).$$

Theorem

 $\{\partial_x \Psi_t; t \in [0,1]\}$ is the parallel translation along the Brownian motion paths $\{\mu_t; t \in [0,1]\}$, that is, $\partial_x \Psi_t \in \overline{\mathbf{T}}_{\mu_t}$ and

$$\int_{\mathbb{T}} |\partial_x \Psi_t|^2 \, \mu_t(dx) = \int_{\mathbb{T}} |\partial_x \Psi_0|^2 \, \rho dx, \quad t \in [0, 1].$$