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This talk is based on a joint work with Hao Ding and Xiangdong Li.

| will not give a survey on the development of the whole topic,
apart from well-known pioneer works by Y. Brenier, R. McCann, F.
Otto, J. Lott, K.T. Sturm, L. Ambrosio, | only cite here the
following papers from which I've learnt a lot.

e Songzi Li and Xiang-dong Li, W-entropy formulas and Langevin
deformation of flows on the Wasserstein space over Riemannian
manifolds, arXiv:1604.02596v1.

e Wei Liu, Liming Wu and Chaoen Zhang, Long-time behaviors of
mean-field interacting particle systems related to McKean-Vlasov
equations. Comm. Math. Phys. 387 (2021), 179-214.

e Feng-Yu Wang, Diffusions and PDEs on Wasserstein Spaces,
arXive: 1903.02148v2, 2019.



Framework

Let M be a connected compact Riemannian manifold, of the
distance dj, with the measure dx such that [, dx = 1. As usual,
we denote by P(M) the space of probability measures on M,
endowed with the Wasserstein distance W, defined by

W (s, ) =inf{ [ dy(xy)naxdy). 7 e Clunp).

MxM

where C(p1, p12) is the set of probability measures m on M x M,
having 1, 2 as two marginal laws. It is well known that P(M)
endowed with W5 is a compact space. In this work, we will be
concerned with the subspace P> (M) of measures having positive
smooth density.



For the tangent space T, of Po(M) at y, we adopt the definition
given by L. Ambrosio and all, that is,

= = L2(n)
T, ={Vy, pe C(M)} ™,
the closure of gradients of smooth functions in the space L?(u) of

vector fields on M : they used absolutely continuous curves to
unify different types of curves in Pp(M).

A curve {c(t); t € [0,1]} in Po(M) is said to be absolutely
continuous if there exists k € L2([0,1]) such that

[%)
Wa(c(tr), c(t2)) < / K(s)ds, t <t
ty
For such a curve, there exists a Borel vector field Z; on M in
L2([0,1] x M) such that the continuity equation holds
dCt

E—FV'(ZtCt) =0.



The uniqueness of solutions to above equation holds if Z; € T, for
almost all t € [0,1]. We say that Z; is the intrinsic derivative of
{ct} and denote it by

dc,

dt

We will also use constant vector fields V,, on Po(M). More
precisely, for ¢ € C°°(M), we consider the ODE

TS VU, Unlx) = x,

I
and let ¢; = (Ug)4p with p given. In this case, % = V. We

say that a functional F is derivable along V/; if

(Dvw}")(,u) = {%}"((Ut)#u)}t:O exists.

The gradient VF(u) € T, exists if (Dvw]-")(u) = (VF, Vi)t ,-
1Y



Here are usual functionals considered in literature, see for example
monographs by Villani, Ambrosio and all.

1) Potential energy functional. F (1) = [,,¢ p(dx), for
p € C3(M).

2) Internal energy functional. Let x : [0, +oo[—] — oo, +o0] be
a proper, continuous convex function. The internal energy F is
defined as follows

Flu) = /M xp(x)) dx, i dp = pax,

and F(u) = 400 otherwise. Two important examples are
m

s
m-—1
3) Interaction energy functional. Let W : M? —] — oo, +0cc] be
a l.s.c function, we define

W(n) = /M " W(x, y)u(dx)u(dy).

for m > 1.

x(s) = slog(s) and x(s) =
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Internal energy functional F plays a particular role. However for
X(s) = slog(s),

pw — F(p) is not continuous.

We need the following explicit expression (see Villani or Ambrosio)

Theorem
For x € C?(R*) such that |x(s)| + s|xX'(s)| + s?|x”(s)| is bounded
over [0,1], and du = p dx,

(B, By, F)(u) = /M V(o) (D)0 dx— /M ) (Vi VAY) p .

where {(s) = X'(s) — X(SS) And



SDE on P, (M)

Given a family of vector fields {Ao(t,-), Ai(t,-),..., An(t,-)} on
M, and B? =t and (B},...,BN) a BM on RV, how to
understand the following SDE on M

N
0diXes =Y Ai(t, Xes)odB], Xoo(x)=x7?
i=0
The above equality formally holds in the tangent space Tx, M.
{Xts, t > s} is a solution to SDE if for any f € C?(M), it holds

f(Xes) =f(x) +Z (ﬁA(u)f us) dB}
j=0"S

1Lt
+ 5 Z / (’C'/24,(u) f) (Xu,s) C/U
j=17°%

which simply comes from: dif(X¢s) = (VF(Xes), 0de Xes).
pe



Now what happens in Py (M) ? Let {¢o, ¢1,...,¢n} be a family
of functions on [0, 1] x M, smooth enough in x € M. In this talk,
V always denotes the gradient operator on M. Consider the
following Stratanovich SDE on M:

N
dXes = Voi(t,Xes)odBl, t>5, Xss(x)=x.
i=0
Let du = p dx be a probability measure on M, we set
pue(w) = (Xtyo(w))#,u. Let o € C?(M). First using Ito formula to
©(X¢t0), then integrating the two hand sides respect to dp, we
have

N
o Fy (1t —Z(/ (Vio, Vi(t,)) meldx) ) o o}

<V4P7 V¢"(t7')>i_ut © dB{“

I
'Mz i\

I
o



We say that the intrinsic 1t6 stochastic differential of y, denoted
by od/ 1, admits the following expression

N

odipt =Y Ve ©dBL.
i=0

Recall that VF, = V,,; then od;F,(u¢) can be written in the form

ody Fy(pe) = <€F<,0a Odt’#t>’rw
symbolically read in the inner product of 'i'“t. In 1td form:

N n

_ o1 _
thap(Nt) = Z<VF<,07 V¢i(t)>i—ll«t dBt + 5 Z(D2V¢,-(t) F<,0)(/~Lt) dt,
i=0 i=1

where D2V¢.(t) F, denotes the second order derivative.
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Theorem

For any internal energy functional F with x satisfying above
conditions, we have

N N
_ o1 _
deF(pe) =Y (VF, Vii(0))7,, 4Bt + 5 ) (DZVWf)(M) dt.
i=0 i=1

Now having these results in hand, we say that the stochastic
process {fit; t > 0} solves the following SDE on P5 o (M).

N

odjpe =Y Vi)(ue) 0 dB, o = px.
i=0

11



Regular curves, parallel translations on P, (M)

J. Lott introduced the Levi-Civita covariant derivative ?le Vi,
and obtained the expression:

<va1 Vi Vs )7, = /M<VV¢1V¢2, Vib3) u(dx).

Let B
N, : L2(M, TM; ) — T,
be the orthogonal projection; then

(vvwl Viﬁz)(:“) =M, (valv¢2).

For n € Py oo(my With du = pdx, p >0, we denote by A, the
Witten Laplacian: A, = A + (Vlogp, V:) and
div,(Z) =div(Z) + (Vlog p, Z), then

N.(Z) = VA, (divu(2)).
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Now let {c;} be a curve in P (M) defined by a flow of
diffeomorphisms X; s associate to ODE:

dXt,s = V(bt(Xt,S) dt, t Z 5, XS(X) — X,

with ¢ = (Xe0)#(pdx). Let {4 t €[0,1]} be a family of vector
fields along {c;; t € [0,1]}, thatis, Y; € T,. Suppose there are
smooth functions (t,x) — ®:(x) and (t, x) — W¢(x) such that

dICt
dt

=Vs,, Yi=Wy,.

J. Lott obtained that if {Y;; t € [0, 1]} is parallel along
{ct; t €[0,1]}, then {VWV,; t € [0,1]} is a solution to the
following linear PDE (Lott equation)

d

SV T, (thth) = 0.
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We can explicit the orthogonal projection I, in the case M = T.
A function v on T is the derivative of a function ¢ if and only if
Jp v(x) dx = 0. The derivative of ¢ on T is denoted by dx¢. Let

du
w e PZOO(T) with p = w 0. Let Ox¢ = IM,(v); then for any

function f,
/ Oxf v(x)p(x) dx = / Oxf Ox® p(x) dx
T T

This implies that Ox(vp) = 0x(0x¢ p), so that for a constant K,

K
vp=0xpp+ K or v=0xp+ ;
Integrating the two hand sides over T yields K = fT . Then
fT 0
)d. 1
Mu(v) =v— fT v(x) al .
fT p ’0
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We put
1

)

Note that [ pdx = 1. We will use I, instead of M,. Then

M) = v = ([ v0oa) 7

Let ¢ € C*°(T) and (X;) be the flow associated to
d

d—tt = O0x¢¢(Xt) and ¢ = (X¢)x(pdx). Set pr = % the density.

Let g: € C*(T) such that [ g¢(x)dx =0. Then {g¢; t €[0,1]} is

a solution to Lott equation if

% + My, (8th 8x¢t> =0

or
d :
% — g 00+ ( [ Dg 0000
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Put f; = g¢(X¢). Then

df
t /axgt X¢t dX) pt(Xt)

Remark that

/@&@@wz— g: P dx
T T
82 92
—_/Mptdx——/gt(xt)< ¢f)(xt)pdx.
T T P

Pt t
Then f; satisfies the following equation

df. o R
% /T fo ZUHXe) pbe) 7e(Xe)

Pt
df;
dt

2
Define A(t, f) = —</ f 8X¢t(Xt)de> pe(Xe). Then
T

= A(t, ).

16



Lemma
There is a constant Cy4 only dependent of ¢ such that

[IA(E F) = Mt 8)ll2paxy < Co lIf = 8llizgpaxy, ¢ € [0,1]-

Proof. Note that
92 2 2 dx
[y xpan= [ C2P g <o, [ &
T\ Pt T T Pt

d
and /ﬁt(Xt)zpdx = (/ —X)*l; it follows that
T

[

and global Lipschitz condition holds.

030

2
t(Xt)de) ﬁt(Xt)zde < H (thOO HfHL2 (pdx)

17



By classical theory of ODE, for fy € L?(p dx), there is a unique
solution f; to above Equation. Set

8t = ft(Xt_l)-

We check that g; is a solution to Lott Equation. Finally

Theorem

For any gy € 'T'pdx given, there is a unique solution g; € Tptdx to
parallel translation equation such that [1|g¢|? p: dx = [;|go|*p dx
for any t € [0, 1].

18



Stochastic parallel translations

Lott equation in determinist case

%th 41, (thth) —0,

becomes
0di(VV:) = ~My (Vwy, V¥, ) 0 dB;

where (i is a stochastic regular curve and B; a Brownian motion.
We will not discuss general situation, but only the case P o(T).

Consider SDE on T,
dXt = 8X¢t(Xt) o dBt

d
Let dpu = pdx and py = (Xe)4p; set pr = % Suppose that
X
{0xV¢; t €[0,1]} is a solution of parallel translations:

1 1
diO Ve = —T,, (02V, Oxr) dBy + (ER;ut _ 55;“) dt.

10



Let f; = OW(X;). Then by Kunita-1t6-Wentzell formula, we get
it = ([ 2w 226:dx) o) dB:
T
1 2 2 A
- = 8X\Ut Ox Pt dX) (05 dt)(Xt)pe(Xe) dt
= /a W, 0, (02¢¢ D) dx>pt( ) dt
3
5 /a \U ax¢t dX /ax¢t Pt dX)pt(Xt)d

We have

2 2¢¢
6th ax(bt dx = ft (Xt) de
T T Pt

2
[ onveon(@zoc000 ax = [ i HELLL () g
T T t
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We introduce two notations
a (a)2<¢t 8ngst)

82¢t X
XTL(X,), by = SOXTEEXTU (x0),
Pt ( t) ' Pt ( t)

Then {f;; t € [0,1]} satisfies the following equation

1
dfy = — (/T frar pdx) pe(Xe) dB: - 5 (/T ftat,odx) (5: 026¢) (Xe) dt

- ;(/ fibt de>ﬁt(xt) dt

3 /ftatpdx /82 2pe dx pt (Xe) dt

= /\1(t, ft) dB: + Na(t, f;) dt.

dy =

As in above section,

[[AL(t, ) = A(t, @)l 2(pax) T [1A2(E, £) — Na(t, 8] L2(pax)
< C¢ Hf - gHB(pdx)'
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By standard Picard iteration or by SDE on Hilbert spaces, there is
a unique solution {f;; t € [0,1]} to above Equation. Define
g: = f:(X; ). Remark that no SDE directly express X, *.

Theorem
Suppose that / go(x)dx = 0, then for any t € [0,1],
T

/Tgt(x) dx = 0.

—1
Proof. Let Rt = M

; then by Kunita,
dx

K, — exp(/ot(aiqﬁs)(xs) ° st).

Note that /gt(x) dx = / f; K¢ dx. We check that
_Jr T
OdtL fT fthdX =0.
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Combining all above results, finally we get

Theorem

Let 0.V, = g¢. Then for = pdx and pe = (Xe)4(pdx),
{0xW¢; t €]0,1]} is the parallel translation along the stochastic
regular curve {us; t € [0,1]}, that is, OV, € T, and

/|3X\Ift|2ut(dx):/|6X\Uo|2pdx, t € [0,1].
T T

Brownian motion paths on P> (T) and parallel translations
along them.

sin(kx) — cos(kx)

. Consider a

Now let (ﬁzk,l(x) = and ¢2k(x) =
sequence of independent real BM {By; k > 1}.
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For N > 1, let XN be the flow associated to

N

xt' =3 (a1 (X 0B (1) + i (X1) o lBn(1))
=1

p = (XM)4(pdx), and {0,WY; t €[0,1]} parallel translation
along {ul;t €[0,1]}. Then letting N — 400,

XN = X, pl = pe with pe = (Xe)4(pdx), and

WY /o converges to 0 W: /pr in L3(dx).

Theorem
{0xV¢; t €[0,1]} is the parallel translation along the Brownian
motion paths {yu; t € [0,1]}, that is, O,V € T,, and

/|8X\Ut’2/,bt(dX) = / ]8X\U0|2pdx, t e [O, 1]
T T
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