Stochastic calculus on Wasserstein spaces

Shizan Fang
Université de Bourgogne

18th Workshop on Markov Processes and Related Topics, Tianjin, August 2, 2023

This talk is based on a joint work with Hao Ding and Xiangdong Li.
I will not give a survey on the development of the whole topic, apart from well-known pioneer works by Y. Brenier, R. McCann, F. Otto, J. Lott, K.T. Sturm, L. Ambrosio, I only cite here the following papers from which l've learnt a lot.

- Songzi Li and Xiang-dong Li, W-entropy formulas and Langevin deformation of flows on the Wasserstein space over Riemannian manifolds, arXiv:1604.02596v1.
- Wei Liu, Liming Wu and Chaoen Zhang, Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equations. Comm. Math. Phys. 387 (2021), 179-214.
- Feng-Yu Wang, Diffusions and PDEs on Wasserstein Spaces, arXive: 1903.02148v2, 2019.

Framework

Let M be a connected compact Riemannian manifold, of the distance d_{M}, with the measure $d x$ such that $\int_{M} d x=1$. As usual, we denote by $\mathbb{P}_{2}(M)$ the space of probability measures on M, endowed with the Wasserstein distance W_{2} defined by

$$
W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)=\inf \left\{\int_{M \times M} d_{M}^{2}(x, y) \pi(d x, d y), \quad \pi \in C\left(\mu_{1}, \mu_{2}\right)\right\}
$$

where $C\left(\mu_{1}, \mu_{2}\right)$ is the set of probability measures π on $M \times M$, having μ_{1}, μ_{2} as two marginal laws. It is well known that $\mathbb{P}_{2}(M)$ endowed with W_{2} is a compact space. In this work, we will be concerned with the subspace $\mathbb{P}_{2, \infty}(M)$ of measures having positive smooth density.

For the tangent space $\overline{\mathbf{T}}_{\mu}$ of $\mathbb{P}_{2}(M)$ at μ, we adopt the definition given by L. Ambrosio and all, that is,

$$
\overline{\mathbf{T}}_{\mu}={\overline{\left\{\nabla \psi, \psi \in C^{\infty}(M)\right\}}}^{L^{2}(\mu)},
$$

the closure of gradients of smooth functions in the space $L^{2}(\mu)$ of vector fields on M : they used absolutely continuous curves to unify different types of curves in $\mathbb{P}_{2}(M)$.
A curve $\{c(t) ; t \in[0,1]\}$ in $\mathbb{P}_{2}(M)$ is said to be absolutely continuous if there exists $k \in L^{2}([0,1])$ such that

$$
W_{2}\left(c\left(t_{1}\right), c\left(t_{2}\right)\right) \leq \int_{t_{1}}^{t_{2}} k(s) d s, \quad t_{1}<t_{2}
$$

For such a curve, there exists a Borel vector field Z_{t} on M in $L^{2}([0,1] \times M)$ such that the continuity equation holds

$$
\frac{d c_{t}}{d t}+\nabla \cdot\left(Z_{t} c_{t}\right)=0
$$

The uniqueness of solutions to above equation holds if $Z_{t} \in \overline{\mathbf{T}}_{c_{t}}$ for almost all $t \in[0,1]$. We say that Z_{t} is the intrinsic derivative of $\left\{c_{t}\right\}$ and denote it by

$$
\frac{d^{\prime} c_{t}}{d t}
$$

We will also use constant vector fields V_{ψ} on $\mathbb{P}_{2}(M)$. More precisely, for $\psi \in C^{\infty}(M)$, we consider the ODE

$$
\frac{d U_{t}}{d t}=\nabla \psi\left(U_{t}\right), \quad U_{0}(x)=x
$$

and let $c_{t}=\left(U_{t}\right)_{\#} \mu$ with μ given. In this case, $\frac{d^{\prime} c_{t}}{d t}=\nabla \psi$. We say that a functional \mathcal{F} is derivable along V_{ψ} if

$$
\left(\bar{D}_{V_{\psi}} \mathcal{F}\right)(\mu)=\left\{\frac{d}{d t} \mathcal{F}\left(\left(U_{t}\right)_{\# \mu}\right)\right\}_{t=0} \quad \text { exists. }
$$

The gradient $\bar{\nabla} \mathcal{F}(\mu) \in \overline{\mathbf{T}}_{\mu}$ exists if $\left(\bar{D}_{V_{\psi}} \mathcal{F}\right)(\mu)=\left\langle\bar{\nabla} \mathcal{F}, V_{\psi}\right\rangle_{\overline{\mathbf{T}}_{\mu}}$.

Here are usual functionals considered in literature, see for example monographs by Villani, Ambrosio and all.

1) Potential energy functional. $F_{\varphi}(\mu)=\int_{M} \varphi \mu(d x)$, for $\varphi \in C^{2}(M)$.
2) Internal energy functional. Let $\chi:[0,+\infty[\rightarrow]-\infty,+\infty]$ be a proper, continuous convex function. The internal energy \mathcal{F} is defined as follows

$$
\mathcal{F}(\mu)=\int_{M} \chi(\rho(x)) d x, \quad \text { if } \quad d \mu=\rho d x
$$

and $\mathcal{F}(\mu)=+\infty$ otherwise. Two important examples are
$\chi(s)=s \log (s)$ and $\chi(s)=\frac{s^{m}}{m-1}$ for $m>1$.
3) Interaction energy functional. Let $\left.\left.W: M^{2} \rightarrow\right]-\infty,+\infty\right]$ be a l.s.c function, we define

$$
\mathcal{W}(\mu)=\int_{M \times M} W(x, y) \mu(d x) \mu(d y)
$$

Internal energy functional \mathcal{F} plays a particular role. However for $\chi(s)=s \log (s)$,

$$
\mu \rightarrow \mathcal{F}(\mu) \quad \text { is not continuous. }
$$

We need the following explicit expression (see Villani or Ambrosio)
Theorem
For $\chi \in C^{2}\left(\mathbb{R}^{*}\right)$ such that $|\chi(s)|+s\left|\chi^{\prime}(s)\right|+s^{2}\left|\chi^{\prime \prime}(s)\right|$ is bounded over $[0,1]$, and $d \mu=\rho d x$,
$\left(\bar{D}_{V_{\psi}} \bar{D}_{V_{\psi}} \mathcal{F}\right)(\mu)=\int_{M} \tilde{\chi}^{\prime}(\rho)(\Delta \psi)^{2} \rho^{2} d x-\int_{M} \tilde{\chi}(\rho)\langle\nabla \psi, \nabla \Delta \psi\rangle \rho d x$,
where $\tilde{\chi}(s)=\chi^{\prime}(s)-\frac{\chi(s)}{s}$. And

$$
\left(\bar{D}_{V_{\psi}} \mathcal{F}\right)(\mu)=-\int_{M}\left(\chi^{\prime}(\rho) \rho-\chi(\rho)\right) \Delta \psi d x
$$

SDE on $\mathbb{P}_{2, \infty}(M)$

Given a family of vector fields $\left\{A_{0}(t, \cdot), A_{1}(t, \cdot), \ldots, A_{N}(t, \cdot)\right\}$ on M, and $B_{t}^{0}=t$ and $\left(B_{t}^{1}, \ldots, B_{t}^{N}\right)$ a BM on \mathbb{R}^{N}, how to understand the following SDE on M

$$
\circ d_{t} X_{t, s}=\sum_{i=0}^{N} A_{i}\left(t, X_{t, s}\right) \circ d B_{t}^{i}, \quad X_{s, s}(x)=x ?
$$

The above equality formally holds in the tangent space $T_{X_{t, s}} M$. $\left\{X_{t, s}, t \geq s\right\}$ is a solution to SDE if for any $f \in C^{2}(M)$, it holds

$$
\begin{aligned}
f\left(X_{t, s}\right)= & f(x)+\sum_{i=0}^{N} \int_{s}^{t}\left(\mathcal{L}_{A_{i}(u)} f\right)\left(X_{u, s}\right) d B_{u}^{i} \\
& +\frac{1}{2} \sum_{i=1}^{N} \int_{s}^{t}\left(\mathcal{L}_{A_{i}(u)}^{2} f\right)\left(X_{u, s}\right) d u,
\end{aligned}
$$

which simply comes from: $d_{t} f\left(X_{t, s}\right)=\left\langle\nabla f\left(X_{t, s}\right), \circ d_{t} X_{t, s}\right\rangle$.

Now what happens in $\mathbb{P}_{2, \infty}(M)$? Let $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{N}\right\}$ be a family of functions on $[0,1] \times M$, smooth enough in $x \in M$. In this talk, ∇ always denotes the gradient operator on M. Consider the following Stratanovich SDE on M:

$$
d X_{t, s}=\sum_{i=0}^{N} \nabla \phi_{i}\left(t, X_{t, s}\right) \circ d B_{t}^{i}, \quad t \geq s, \quad X_{s, s}(x)=x
$$

Let $d \mu=\rho d x$ be a probability measure on M, we set $\mu_{t}(\omega)=\left(X_{t, 0}(\omega)\right)_{\#} \mu$. Let $\varphi \in C^{2}(M)$. First using Itô formula to $\varphi\left(X_{t, 0}\right)$, then integrating the two hand sides respect to $d \mu$, we have

$$
\begin{aligned}
\circ d_{t} F_{\varphi}\left(\mu_{t}\right) & =\sum_{i=0}^{N}\left(\int_{M}\left\langle\nabla \varphi, \nabla \phi_{i}(t, \cdot)\right\rangle \mu_{t}(d x)\right) \circ d B_{t}^{i} \\
& =\sum_{i=0}^{N}\left\langle V_{\varphi}, V_{\phi_{i}(t, \cdot)}\right\rangle_{\overline{\boldsymbol{T}}_{\mu_{t}}} \circ d B_{t}^{i}
\end{aligned}
$$

We say that the intrinsic Itô stochastic differential of μ_{t}, denoted by $\circ d_{t}^{l} \mu_{t}$, admits the following expression

$$
\circ d_{t}^{\prime} \mu_{t}=\sum_{i=0}^{N} V_{\phi_{i}(t, \cdot)} \circ d B_{t}^{i}
$$

Recall that $\bar{\nabla} F_{\varphi}=V_{\varphi}$; then $\circ d_{t} F_{\varphi}\left(\mu_{t}\right)$ can be written in the form

$$
\circ d_{t} F_{\varphi}\left(\mu_{t}\right)=\left\langle\bar{\nabla} F_{\varphi}, \circ d_{t}^{\prime} \mu_{t}\right\rangle_{\overline{\mathbf{T}}_{\mu_{t}}}
$$

symbolically read in the inner product of $\overline{\mathbf{T}}_{\mu_{t}}$. In Itô form:

$$
d_{t} F_{\varphi}\left(\mu_{t}\right)=\sum_{i=0}^{N}\left\langle\bar{\nabla} F_{\varphi}, V_{\phi_{i}(t)}\right\rangle_{\overline{\mathbf{T}}_{\mu_{t}}} d B_{t}^{i}+\frac{1}{2} \sum_{i=1}^{n}\left(\bar{D}_{V_{\phi_{i}(t)}^{2}} F_{\varphi}\right)\left(\mu_{t}\right) d t
$$

where $\bar{D}_{V_{\phi_{i}(t)}}^{2} F_{\varphi}$ denotes the second order derivative.

Theorem

For any internal energy functional \mathcal{F} with χ satisfying above conditions, we have

$$
d_{t} \mathcal{F}\left(\mu_{t}\right)=\sum_{i=0}^{N}\left\langle\bar{\nabla} \mathcal{F}, V_{\phi_{i}(t)}\right\rangle_{\overline{\boldsymbol{T}}_{\mu_{t}}} d B_{t}^{i}+\frac{1}{2} \sum_{i=1}^{N}\left(\bar{D}_{V_{\phi_{i}(t)}}^{2 \mathcal{F}}\right)\left(\mu_{t}\right) d t
$$

Now having these results in hand, we say that the stochastic process $\left\{\mu_{t} ; t \geq 0\right\}$ solves the following SDE on $\mathbb{P}_{2, \infty}(M)$.

$$
\circ d_{t}^{\prime} \mu_{t}=\sum_{i=0}^{N} V_{\phi_{i}(t)}\left(\mu_{t}\right) \circ d B_{t}^{i}, \quad \mu_{0}=\rho d x
$$

Regular curves, parallel translations on $\mathbb{P}_{2, \infty}(M)$

J. Lott introduced the Levi-Civita covariant derivative $\bar{\nabla} v_{\psi_{1}} V_{\psi_{2}}$ and obtained the expression:

$$
\left\langle\bar{\nabla} v_{\psi_{1}} V_{\psi_{2}}, V_{\psi_{3}}\right\rangle_{\overline{\mathbf{T}}_{\mu}}=\int_{M}\left\langle\nabla_{\nabla \psi_{1}} \nabla \psi_{2}, \nabla \psi_{3}\right\rangle \mu(d x)
$$

Let

$$
\Pi_{\mu}: L^{2}(M, T M ; \mu) \rightarrow \overline{\mathbf{T}}_{\mu}
$$

be the orthogonal projection; then

$$
\left(\bar{\nabla}_{V_{\psi_{1}}} V_{\psi_{2}}\right)(\mu)=\Pi_{\mu}\left(\nabla_{\nabla \psi_{1}} \nabla \psi_{2}\right)
$$

For $\mu \in \mathbb{P}_{2, \infty(M)}$ with $d \mu=\rho d x, \rho>0$, we denote by Δ_{μ} the Witten Laplacian: $\Delta_{\mu}=\Delta+\langle\nabla \log \rho, \nabla \cdot\rangle$ and $\operatorname{div}_{\mu}(Z)=\operatorname{div}(Z)+\langle\nabla \log \rho, Z\rangle$, then

$$
\Pi_{\mu}(Z)=\nabla \Delta_{\mu}^{-1}\left(\operatorname{div}_{\mu}(Z)\right)
$$

Now let $\left\{c_{t}\right\}$ be a curve in $\mathbb{P}_{2, \infty}(M)$ defined by a flow of diffeomorphisms $X_{t, s}$ associate to ODE:

$$
d X_{t, s}=\nabla \phi_{t}\left(X_{t, s}\right) d t, \quad t \geq s, \quad X_{s}(x)=x
$$

with $c_{t}=\left(X_{t, 0}\right)_{\#}(\rho d x)$. Let $\left\{Y_{t} ; t \in[0,1]\right\}$ be a family of vector fields along $\left\{c_{t} ; t \in[0,1]\right\}$, that is, $Y_{t} \in \overline{\mathbf{T}}_{c_{t}}$. Suppose there are smooth functions $(t, x) \rightarrow \Phi_{t}(x)$ and $(t, x) \rightarrow \Psi_{t}(x)$ such that

$$
\frac{d^{\prime} c_{t}}{d t}=V_{\Phi_{t}}, \quad Y_{t}=V_{\Psi_{t}}
$$

J. Lott obtained that if $\left\{Y_{t} ; t \in[0,1]\right\}$ is parallel along $\left\{c_{t} ; t \in[0,1]\right\}$, then $\left\{\nabla \Psi_{t} ; t \in[0,1]\right\}$ is a solution to the following linear PDE (Lott equation)

$$
\frac{d}{d t} \nabla \Psi_{t}+\Pi_{c_{t}}\left(\nabla_{\nabla \Phi_{t}} \nabla \Psi_{t}\right)=0
$$

We can explicit the orthogonal projection $\Pi_{c_{t}}$ in the case $M=\mathbb{T}$. A function v on \mathbb{T} is the derivative of a function ϕ if and only if $\int_{\mathbb{T}} v(x) d x=0$. The derivative of ϕ on \mathbb{T} is denoted by $\partial_{x} \phi$. Let $\mu \in \mathbb{P}_{2, \infty}(\mathbb{T})$ with $\rho=\frac{d \mu}{d x}>0$. Let $\partial_{x} \phi=\Pi_{\mu}(v)$; then for any function f,

$$
\int_{\mathbb{T}} \partial_{x} f v(x) \rho(x) d x=\int_{\mathbb{T}} \partial_{x} f \partial_{x} \phi \rho(x) d x
$$

This implies that $\partial_{x}(v \rho)=\partial_{x}\left(\partial_{x} \phi \rho\right)$, so that for a constant K,

$$
v \rho=\partial_{x} \phi \rho+K \quad \text { or } \quad v=\partial_{x} \phi+\frac{K}{\rho} .
$$

Integrating the two hand sides over \mathbb{T} yields $K=\frac{\int_{\mathbb{T}} v(x) d x}{\int_{\mathbb{T}} \frac{d x}{\rho}}$. Then

$$
\Pi_{\mu}(v)=v-\frac{\int_{\mathbb{T}} v(x) d x}{\int_{\mathbb{T}} \frac{d x}{\rho}} \cdot \frac{1}{\rho}
$$

We put

$$
\hat{\rho}=\frac{1}{\left(\int_{\mathbb{T}} \frac{d x}{\rho}\right) \rho}
$$

Note that $\int_{\mathbb{T}} \hat{\rho} d x=1$. We will use Π_{ρ} instead of Π_{μ}. Then

$$
\Pi_{\rho}(v)=v-\left(\int_{\mathbb{T}} v(x) d x\right) \hat{\rho}
$$

Let $\phi_{t} \in C^{\infty}(\mathbb{T})$ and $\left(X_{t}\right)$ be the flow associated to $\frac{d X_{t}}{d t}=\partial_{x} \phi_{t}\left(X_{t}\right)$ and $c_{t}=\left(X_{t}\right)_{\#}(\rho d x)$. Set $\rho_{t}=\frac{d c_{t}}{d x}$ the density. Let $g_{t} \in C^{2}(\mathbb{T})$ such that $\int_{\mathbb{T}} g_{t}(x) d x=0$. Then $\left\{g_{t} ; t \in[0,1]\right\}$ is a solution to Lott equation if

$$
\frac{d g_{t}}{d t}+\Pi_{\rho_{t}}\left(\partial_{x} g_{t} \partial_{x} \phi_{t}\right)=0
$$

or

$$
\frac{d g_{t}}{d t}=-\partial_{\times} g_{t} \partial_{x} \phi_{t}+\left(\int_{\mathbb{T}} \partial_{\times} g_{t} \partial_{x} \phi_{t} d x\right) \hat{\rho}_{t}
$$

Put $f_{t}=g_{t}\left(X_{t}\right)$. Then

$$
\frac{d f_{t}}{d t}=\left(\int_{\mathbb{T}} \partial_{x} g_{t} \partial_{x} \phi_{t} d x\right) \hat{\rho}_{t}\left(X_{t}\right)
$$

Remark that

$$
\begin{aligned}
& \int_{\mathbb{T}} \partial_{x} g_{t} \partial_{x} \phi_{t} d x=-\int_{\mathbb{T}} g_{t} \partial_{x}^{2} \phi_{t} d x \\
& =-\int_{\mathbb{T}} \frac{g_{t} \partial_{x}^{2} \phi_{t}}{\rho_{t}} \rho_{t} d x=-\int_{\mathbb{T}} g_{t}\left(X_{t}\right)\left(\frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\right)\left(X_{t}\right) \rho d x
\end{aligned}
$$

Then f_{t} satisfies the following equation

$$
\frac{d f_{t}}{d t}=-\left(\int_{\mathbb{T}} f_{t} \frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\left(X_{t}\right) \rho d x\right) \hat{\rho}_{t}\left(X_{t}\right)
$$

Define $\Lambda(t, f)=-\left(\int_{\mathbb{T}} f \frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\left(X_{t}\right) \rho d x\right) \hat{\rho}_{t}\left(X_{t}\right)$. Then

$$
\frac{d f_{t}}{d t}=\Lambda\left(t, f_{t}\right)
$$

Lemma

There is a constant C_{ϕ} only dependent of ϕ such that

$$
\|\Lambda(t, f)-\Lambda(t, g)\|_{L^{2}(\rho d x)} \leq C_{\phi}\|f-g\|_{L^{2}(\rho d x)}, \quad t \in[0,1]
$$

Proof. Note that

$$
\int_{\mathbb{T}}\left(\frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\right)^{2}\left(X_{t}\right) \rho d x=\int_{\mathbb{T}} \frac{\left(\partial_{x}^{2} \phi_{t}\right)^{2}}{\rho_{t}} d x \leq\left\|\partial_{x}^{2} \phi_{t}\right\|_{\infty}^{2} \int_{\mathbb{T}} \frac{d x}{\rho_{t}}
$$

and $\int_{\mathbb{T}} \hat{\rho}_{t}\left(X_{t}\right)^{2} \rho d x=\left(\int_{\mathbb{T}} \frac{d x}{\rho_{t}}\right)^{-1}$; it follows that

$$
\int_{\mathbb{T}}\left|\int_{\mathbb{T}} f \frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\left(X_{t}\right) \rho d x\right|^{2} \hat{\rho}_{t}\left(X_{t}\right)^{2} \rho d x \leq\left\|\partial_{x}^{2} \phi_{t}\right\|_{\infty}\|f\|_{L^{2}(\rho d x)}^{2}
$$

and global Lipschitz condition holds.

By classical theory of ODE, for $f_{0} \in L^{2}(\rho d x)$, there is a unique solution f_{t} to above Equation. Set

$$
g_{t}=f_{t}\left(X_{t}^{-1}\right)
$$

We check that g_{t} is a solution to Lott Equation. Finally
Theorem
For any $g_{0} \in \overline{\mathbf{T}}_{\rho d x}$ given, there is a unique solution $g_{t} \in \overline{\mathbf{T}}_{\rho_{t} d x}$ to parallel translation equation such that $\int_{\mathbb{T}}\left|g_{t}\right|^{2} \rho_{t} d x=\int_{\mathbb{T}}\left|g_{0}\right|^{2} \rho d x$ for any $t \in[0,1]$.

Stochastic parallel translations

Lott equation in determinist case

$$
\frac{d}{d t} \nabla \Psi_{t}+\Pi_{c_{t}}\left(\nabla_{\nabla \Phi_{t}} \nabla \Psi_{t}\right)=0
$$

becomes

$$
\circ d_{t}\left(\nabla \Psi_{t}\right)=-\Pi_{\mu_{t}}\left(\nabla_{\nabla \phi_{i}} \nabla \Psi_{t}\right) \circ d B_{t}
$$

where μ_{t} is a stochastic regular curve and B_{t} a Brownian motion. We will not discuss general situation, but only the case $\mathbb{P}_{2, \infty}(\mathbb{T})$.
Consider SDE on \mathbb{T},

$$
d X_{t}=\partial_{x} \phi_{t}\left(X_{t}\right) \circ d B_{t}
$$

Let $d \mu=\rho d x$ and $\mu_{t}=\left(X_{t}\right)_{\#} \mu$; set $\rho_{t}=\frac{d \mu_{t}}{d x}$. Suppose that $\left\{\partial_{x} \Psi_{t} ; t \in[0,1]\right\}$ is a solution of parallel translations:

$$
d_{t} \partial_{x} \Psi_{t}=-\Pi_{\rho_{t}}\left(\partial_{x}^{2} \Psi_{t} \partial_{x} \phi_{t}\right) d B_{t}+\left(\frac{1}{2} R_{t}^{\Psi_{t}}-\frac{1}{2} S_{t}^{\psi_{t}}\right) d t
$$

Let $f_{t}=\partial \Psi_{t}\left(X_{t}\right)$. Then by Kunita-Itô-Wentzell formula, we get

$$
\begin{aligned}
d_{t} f_{t}= & -\left(\int_{\mathbb{T}} \partial_{x} \Psi_{t} \partial_{x}^{2} \phi_{t} d x\right) \hat{\rho}_{t}\left(X_{t}\right) d B_{t} \\
& -\frac{1}{2}\left(\int_{\mathbb{T}} \partial_{x} \Psi_{t} \partial_{x}^{2} \phi_{t} d x\right)\left(\partial_{x}^{2} \phi_{t}\right)\left(X_{t}\right) \hat{\rho}_{t}\left(X_{t}\right) d t \\
& -\frac{1}{2}\left(\int_{\mathbb{T}} \partial_{x} \Psi_{t} \partial_{x}\left(\partial_{x}^{2} \phi_{t} \partial_{x} \phi_{t}\right) d x\right) \hat{\rho}_{t}\left(X_{t}\right) d t \\
& +\frac{3}{2}\left(\int_{\mathbb{T}} \partial_{x} \Psi_{t} \partial_{x}^{2} \phi_{t} d x\right)\left(\int_{\mathbb{T}} \partial_{x}^{2} \phi_{t} \hat{\rho}_{t} d x\right) \hat{\rho}_{t}\left(X_{t}\right) d t
\end{aligned}
$$

We have

$$
\begin{aligned}
\int_{\mathbb{T}} \partial_{x} \Psi_{t} \partial_{x}^{2} \phi_{t} d x & =\int_{\mathbb{T}} f_{t} \times \frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\left(X_{t}\right) \rho d x \\
\int_{\mathbb{T}} \partial_{x} \Psi_{t} \partial_{x}\left(\partial_{x}^{2} \phi_{t} \partial_{x} \phi_{t}\right) d x & =\int_{\mathbb{T}} f_{t} \times \frac{\partial_{x}\left(\partial_{x}^{2} \phi_{t} \partial_{x} \phi_{t}\right)}{\rho_{t}}\left(X_{t}\right) \rho d x
\end{aligned}
$$

We introduce two notations

$$
a_{t}=\frac{\partial_{x}^{2} \phi_{t}}{\rho_{t}}\left(X_{t}\right), \quad b_{t}=\frac{\partial_{x}\left(\partial_{x}^{2} \phi_{t} \partial_{x} \phi_{t}\right)}{\rho_{t}}\left(X_{t}\right)
$$

Then $\left\{f_{t} ; t \in[0,1]\right\}$ satisfies the following equation

$$
\begin{aligned}
d_{t} f_{t}= & -\left(\int_{\mathbb{T}} f_{t} a_{t} \rho d x\right) \hat{\rho}_{t}\left(X_{t}\right) d B_{t}-\frac{1}{2}\left(\int_{\mathbb{T}} f_{t} a_{t} \rho d x\right)\left(\hat{\rho}_{t} \partial_{x}^{2} \phi_{t}\right)\left(X_{t}\right) d t \\
& -\frac{1}{2}\left(\int_{\mathbb{T}} f_{t} b_{t} \rho d x\right) \hat{\rho}_{t}\left(X_{t}\right) d t \\
& +\frac{3}{2}\left(\int_{\mathbb{T}} f_{t} a_{t} \rho d x\right)\left(\int_{\mathbb{T}} \partial_{x}^{2} \phi_{t}^{2} \hat{\rho}_{t} d x\right) \hat{\rho}_{t}\left(X_{t}\right) d t \\
& =\Lambda_{1}\left(t, f_{t}\right) d B_{t}+\Lambda_{2}\left(t, f_{t}\right) d t
\end{aligned}
$$

As in above section,

$$
\begin{aligned}
& \left\|\Lambda_{1}(t, f)-\Lambda_{1}(t, g)\right\|_{L^{2}(\rho d x)}+\left\|\Lambda_{2}(t, f)-\Lambda_{2}(t, g)\right\|_{L^{2}(\rho d x)} \\
& \leq C_{\phi}\|f-g\|_{L^{2}(\rho d x)} .
\end{aligned}
$$

By standard Picard iteration or by SDE on Hilbert spaces, there is a unique solution $\left\{f_{t} ; t \in[0,1]\right\}$ to above Equation. Define $g_{t}=f_{t}\left(X_{t}^{-1}\right)$. Remark that no SDE directly express X_{t}^{-1}.
Theorem
Suppose that $\int_{\mathbb{T}} g_{0}(x) d x=0$, then for any $t \in[0,1]$,
$\int_{\mathbb{T}} g_{t}(x) d x=0$.
Proof. Let $\tilde{K}_{t}=\frac{d\left(X_{t}^{-1}\right)_{\#}(d x)}{d x}$; then by Kunita,

$$
\tilde{K}_{t}=\exp \left(\int_{0}^{t}\left(\partial_{x}^{2} \phi_{s}\right)\left(X_{s}\right) \circ d B_{s}\right)
$$

Note that $\int_{\mathbb{T}} g_{t}(x) d x=\int_{\mathbb{T}} f_{t} \tilde{K}_{t} d x$. We check that $\circ d_{t} \int_{\mathbb{T}} f_{t} \tilde{K}_{t} d x=0$.

Combining all above results, finally we get
Theorem
Let $\partial_{x} \Psi_{t}=g_{t}$. Then for $\mu=\rho d x$ and $\mu_{t}=\left(X_{t}\right)_{\#}(\rho d x)$,
$\left\{\partial_{x} \Psi_{t} ; t \in[0,1]\right\}$ is the parallel translation along the stochastic regular curve $\left\{\mu_{t} ; t \in[0,1]\right\}$, that is, $\partial_{x} \Psi_{t} \in \overline{\mathbf{T}}_{\mu_{t}}$ and

$$
\int_{\mathbb{T}}\left|\partial_{x} \Psi_{t}\right|^{2} \mu_{t}(d x)=\int_{\mathbb{T}}\left|\partial_{x} \Psi_{0}\right|^{2} \rho d x, \quad t \in[0,1]
$$

Brownian motion paths on $\mathbb{P}_{2, \infty}(\mathbb{T})$ and parallel translations along them.
Now let $\phi_{2 k-1}(x)=\frac{\sin (k x)}{k}$ and $\phi_{2 k}(x)=\frac{-\cos (k x)}{k}$. Consider a sequence of independent real $\mathrm{BM}\left\{B_{k} ; k \geq 1\right\}$.

For $N \geq 1$, let X_{t}^{N} be the flow associated to
$d X_{t}^{N}=\sum_{k=1}^{N} \frac{1}{\alpha_{k}}\left(\partial_{x} \phi_{2 k-1}\left(X_{t}^{N}\right) \circ d B_{2 k-1}(t)+\partial_{x} \phi_{2 k}\left(X_{t}^{N}\right) \circ d B_{2 k}(t)\right)$,
$\mu_{t}^{N}=\left(X_{t}^{N}\right)_{\#}(\rho d x)$, and $\left\{\partial_{x} \Psi_{t}^{N} ; t \in[0,1]\right\}$ parallel translation along $\left\{\mu_{t}^{N} ; t \in[0,1]\right\}$. Then letting $N \rightarrow+\infty$,
$X_{t}^{N} \rightarrow X_{t}, \quad \mu_{t}^{N} \rightarrow \mu_{t} \quad$ with $\mu_{t}=\left(X_{t}\right)_{\#}(\rho d x)$, and
$\partial_{x} \Psi_{t}^{N} \sqrt{\rho_{t}^{N}}$ converges to $\partial_{x} \Psi_{t} \sqrt{\rho_{t}}$ in $L^{2}(d x)$.
Theorem
$\left\{\partial_{x} \Psi_{t} ; t \in[0,1]\right\}$ is the parallel translation along the Brownian motion paths $\left\{\mu_{t} ; t \in[0,1]\right\}$, that is, $\partial_{x} \Psi_{t} \in \overline{\mathbf{T}}_{\mu_{t}}$ and

$$
\int_{\mathbb{T}}\left|\partial_{x} \Psi_{t}\right|^{2} \mu_{t}(d x)=\int_{\mathbb{T}}\left|\partial_{x} \Psi_{0}\right|^{2} \rho d x, \quad t \in[0,1]
$$

