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This talk is based on a joint work with Hao Ding and Xiangdong Li.

I will not give a survey on the development of the whole topic,
apart from well-known pioneer works by Y. Brenier, R. McCann, F.
Otto, J. Lott, K.T. Sturm, L. Ambrosio, I only cite here the
following papers from which I’ve learnt a lot.

• Songzi Li and Xiang-dong Li, W-entropy formulas and Langevin
deformation of flows on the Wasserstein space over Riemannian
manifolds, arXiv:1604.02596v1.

• Wei Liu, Liming Wu and Chaoen Zhang, Long-time behaviors of
mean-field interacting particle systems related to McKean-Vlasov
equations. Comm. Math. Phys. 387 (2021), 179-214.

• Feng-Yu Wang, Diffusions and PDEs on Wasserstein Spaces,
arXive: 1903.02148v2, 2019.
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Framework

Let M be a connected compact Riemannian manifold, of the
distance dM , with the measure dx such that

∫
M dx = 1. As usual,

we denote by P2(M) the space of probability measures on M,
endowed with the Wasserstein distance W2 defined by

W 2
2 (µ1, µ2) = inf

{∫
M×M

d2
M(x , y)π(dx , dy), π ∈ C (µ1, µ2)

}
,

where C (µ1, µ2) is the set of probability measures π on M ×M,
having µ1, µ2 as two marginal laws. It is well known that P2(M)
endowed with W2 is a compact space. In this work, we will be
concerned with the subspace P2,∞(M) of measures having positive
smooth density.
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For the tangent space T̄µ of P2(M) at µ, we adopt the definition
given by L. Ambrosio and all, that is,

T̄µ =
{
∇ψ, ψ ∈ C∞(M)

}L2(µ)
,

the closure of gradients of smooth functions in the space L2(µ) of
vector fields on M : they used absolutely continuous curves to
unify different types of curves in P2(M).

A curve {c(t); t ∈ [0, 1]} in P2(M) is said to be absolutely
continuous if there exists k ∈ L2([0, 1]) such that

W2

(
c(t1), c(t2)

)
≤
∫ t2

t1

k(s) ds, t1 < t2.

For such a curve, there exists a Borel vector field Zt on M in
L2([0, 1]×M) such that the continuity equation holds

dct
dt

+∇ · (Ztct) = 0.
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The uniqueness of solutions to above equation holds if Zt ∈ T̄ct for
almost all t ∈ [0, 1]. We say that Zt is the intrinsic derivative of
{ct} and denote it by

d I ct
dt

.

We will also use constant vector fields Vψ on P2(M). More
precisely, for ψ ∈ C∞(M), we consider the ODE

dUt

dt
= ∇ψ(Ut), U0(x) = x ,

and let ct = (Ut)#µ with µ given. In this case,
d I ct
dt

= ∇ψ. We

say that a functional F is derivable along Vψ if

(D̄VψF)(µ) =
{ d

dt
F((Ut)#µ)

}
t=0

exists.

The gradient ∇̄F(µ) ∈ T̄µ exists if (D̄VψF)(µ) = 〈∇̄F ,Vψ〉T̄µ .
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Here are usual functionals considered in literature, see for example
monographs by Villani, Ambrosio and all.

1) Potential energy functional. Fϕ(µ) =
∫
M ϕ µ(dx), for

ϕ ∈ C 2(M).

2) Internal energy functional. Let χ : [0,+∞[→]−∞,+∞] be
a proper, continuous convex function. The internal energy F is
defined as follows

F(µ) =

∫
M
χ(ρ(x)) dx , if dµ = ρ dx ,

and F(µ) = +∞ otherwise. Two important examples are

χ(s) = s log(s) and χ(s) =
sm

m − 1
for m > 1.

3) Interaction energy functional. Let W : M2 →]−∞,+∞] be
a l.s.c function, we define

W(µ) =

∫
M×M

W (x , y)µ(dx)µ(dy).
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Internal energy functional F plays a particular role. However for
χ(s) = s log(s),

µ→ F(µ) is not continuous.

We need the following explicit expression (see Villani or Ambrosio)

Theorem
For χ ∈ C 2(R∗) such that |χ(s)|+ s|χ′(s)|+ s2|χ′′(s)| is bounded
over [0, 1], and dµ = ρ dx,

(D̄Vψ D̄VψF)(µ) =

∫
M
χ̃′(ρ)(∆ψ)2ρ2 dx−

∫
M
χ̃(ρ)〈∇ψ,∇∆ψ〉 ρ dx ,

where χ̃(s) = χ′(s)− χ(s)

s
. And

(D̄VψF)(µ) = −
∫
M

(
χ′(ρ)ρ− χ(ρ)

)
∆ψ dx
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SDE on P2,∞(M)

Given a family of vector fields {A0(t, ·),A1(t, ·), . . . ,AN(t, ·)} on
M, and B0

t = t and (B1
t , . . . ,B

N
t ) a BM on RN , how to

understand the following SDE on M

◦ dtXt,s =
N∑
i=0

Ai (t,Xt,s) ◦ dB i
t , Xs,s(x) = x ?

The above equality formally holds in the tangent space TXt,sM.
{Xt,s , t ≥ s} is a solution to SDE if for any f ∈ C 2(M), it holds

f (Xt,s) =f (x) +
N∑
i=0

∫ t

s
(LAi (u)f )(Xu,s) dB i

u

+
1

2

N∑
i=1

∫ t

s

(
L2
Ai (u)f

)
(Xu,s) du,

which simply comes from: dt f (Xt,s) = 〈∇f (Xt,s), ◦dtXt,s〉.
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Now what happens in P2,∞(M) ? Let {φ0, φ1, . . . , φN} be a family
of functions on [0, 1]×M, smooth enough in x ∈ M. In this talk,
∇ always denotes the gradient operator on M. Consider the
following Stratanovich SDE on M:

dXt,s =
N∑
i=0

∇φi (t,Xt,s) ◦ dB i
t , t ≥ s, Xs,s(x) = x .

Let dµ = ρ dx be a probability measure on M, we set
µt(ω) =

(
Xt,0(ω)

)
#
µ. Let ϕ ∈ C 2(M). First using Itô formula to

ϕ(Xt,0), then integrating the two hand sides respect to dµ, we
have

◦dt Fϕ(µt) =
N∑
i=0

(∫
M
〈∇ϕ,∇φi (t, ·)〉 µt(dx)

)
◦ dB i

t

=
N∑
i=0

〈Vϕ,Vφi (t,·)〉T̄µt ◦ dB
i
t .
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We say that the intrinsic Itô stochastic differential of µt , denoted
by ◦d I

tµt , admits the following expression

◦d I
tµt =

N∑
i=0

Vφi (t,·) ◦ dB
i
t .

Recall that ∇̄Fϕ = Vϕ; then ◦dtFϕ(µt) can be written in the form

◦dt Fϕ(µt) = 〈∇̄Fϕ, ◦d I
tµt〉T̄µt ,

symbolically read in the inner product of T̄µt . In Itô form:

dtFϕ(µt) =
N∑
i=0

〈∇̄Fϕ,Vφi (t)〉T̄µt dB
i
t +

1

2

n∑
i=1

(D̄2
Vφi (t)

Fϕ)(µt) dt,

where D̄2
Vφi (t)

Fϕ denotes the second order derivative.
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Theorem
For any internal energy functional F with χ satisfying above
conditions, we have

dtF(µt) =
N∑
i=0

〈∇̄F ,Vφi (t)〉T̄µt dB
i
t +

1

2

N∑
i=1

(
D̄2
Vφi (t)
F
)
(µt) dt.

Now having these results in hand, we say that the stochastic
process {µt ; t ≥ 0} solves the following SDE on P2,∞(M).

◦d I
tµt =

N∑
i=0

Vφi (t)(µt) ◦ dB i
t , µ0 = ρ dx .
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Regular curves, parallel translations on P2,∞(M)

J. Lott introduced the Levi-Civita covariant derivative ∇̄Vψ1
Vψ2

and obtained the expression:

〈∇̄Vψ1
Vψ2 ,Vψ3〉T̄µ =

∫
M
〈∇∇ψ1∇ψ2,∇ψ3〉µ(dx).

Let
Πµ : L2(M,TM;µ)→ T̄µ

be the orthogonal projection; then(
∇̄Vψ1

Vψ2

)
(µ) = Πµ

(
∇∇ψ1∇ψ2

)
.

For µ ∈ P2,∞(M) with dµ = ρ dx , ρ > 0, we denote by ∆µ the
Witten Laplacian: ∆µ = ∆ + 〈∇ log ρ, ∇·〉 and
divµ(Z ) = div(Z ) + 〈∇ log ρ,Z 〉, then

Πµ(Z ) = ∇∆−1
µ

(
divµ(Z )

)
.
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Now let {ct} be a curve in P2,∞(M) defined by a flow of
diffeomorphisms Xt,s associate to ODE:

dXt,s = ∇φt(Xt,s) dt, t ≥ s, Xs(x) = x ,

with ct = (Xt,0)#(ρ dx). Let {Yt ; t ∈ [0, 1]} be a family of vector
fields along {ct ; t ∈ [0, 1]}, that is, Yt ∈ T̄ct . Suppose there are
smooth functions (t, x)→ Φt(x) and (t, x)→ Ψt(x) such that

d I ct
dt

= VΦt , Yt = VΨt .

J. Lott obtained that if {Yt ; t ∈ [0, 1]} is parallel along
{ct ; t ∈ [0, 1]}, then {∇Ψt ; t ∈ [0, 1]} is a solution to the
following linear PDE (Lott equation)

d

dt
∇Ψt + Πct

(
∇∇Φt∇Ψt

)
= 0.
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We can explicit the orthogonal projection Πct in the case M = T.
A function v on T is the derivative of a function φ if and only if∫
T v(x) dx = 0. The derivative of φ on T is denoted by ∂xφ. Let

µ ∈ P2,∞(T) with ρ =
dµ

dx
> 0. Let ∂xφ = Πµ(v); then for any

function f , ∫
T
∂x f v(x)ρ(x) dx =

∫
T
∂x f ∂xφ ρ(x) dx .

This implies that ∂x(vρ) = ∂x(∂xφ ρ), so that for a constant K ,

vρ = ∂xφ ρ+ K or v = ∂xφ+
K

ρ
.

Integrating the two hand sides over T yields K =

∫
T v(x)dx∫

T
dx
ρ

. Then

Πµ(v) = v −
∫
T v(x)dx∫

T
dx
ρ

· 1

ρ
.
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We put

ρ̂ =
1(∫

T
dx
ρ

)
ρ
.

Note that
∫
T ρ̂ dx = 1. We will use Πρ instead of Πµ. Then

Πρ(v) = v −
(∫

T
v(x)dx

)
ρ̂.

Let φt ∈ C∞(T) and (Xt) be the flow associated to
dXt

dt
= ∂xφt(Xt) and ct = (Xt)#(ρdx). Set ρt =

dct
dx

the density.

Let gt ∈ C 2(T) such that
∫
T gt(x) dx = 0. Then {gt ; t ∈ [0, 1]} is

a solution to Lott equation if

dgt
dt

+ Πρt

(
∂xgt ∂xφt

)
= 0.

or
dgt
dt

= −∂xgt ∂xφt +
(∫

T
∂xgt ∂xφt dx

)
ρ̂t .
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Put ft = gt(Xt). Then

dft
dt

=
(∫

T
∂xgt ∂xφt dx

)
ρ̂t(Xt).

Remark that∫
T
∂xgt ∂xφt dx = −

∫
T
gt ∂

2
xφt dx

= −
∫
T

gt ∂
2
xφt
ρt

ρt dx = −
∫
T
gt(Xt)

(∂2
xφt
ρt

)
(Xt) ρ dx .

Then ft satisfies the following equation

dft
dt

= −
(∫

T
ft
∂2
xφt
ρt

(Xt) ρ dx
)
ρ̂t(Xt).

Define Λ(t, f ) = −
(∫

T
f
∂2
xφt
ρt

(Xt) ρ dx
)
ρ̂t(Xt). Then

dft
dt

= Λ(t, ft).
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Lemma
There is a constant Cφ only dependent of φ such that

||Λ(t, f )− Λ(t, g)||L2(ρ dx) ≤ Cφ ||f − g ||L2(ρ dx), t ∈ [0, 1].

Proof. Note that∫
T

(∂2
xφt
ρt

)2
(Xt) ρ dx =

∫
T

(∂2
xφt)

2

ρt
dx ≤ ||∂2

xφt ||2∞
∫
T

dx

ρt
,

and

∫
T
ρ̂t(Xt)

2 ρ dx = (

∫
T

dx

ρt
)−1; it follows that

∫
T

∣∣∣∫
T
f
∂2
xφt
ρt

(Xt) ρ dx
∣∣∣2 ρ̂t(Xt)

2 ρ dx ≤ ||∂2
xφt ||∞ ||f ||2L2(ρ dx)

and global Lipschitz condition holds.
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By classical theory of ODE, for f0 ∈ L2(ρ dx), there is a unique
solution ft to above Equation. Set

gt = ft(X
−1
t ).

We check that gt is a solution to Lott Equation. Finally

Theorem
For any g0 ∈ T̄ρdx given, there is a unique solution gt ∈ T̄ρtdx to
parallel translation equation such that

∫
T |gt |

2 ρt dx =
∫
T |g0|2ρ dx

for any t ∈ [0, 1].
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Stochastic parallel translations

Lott equation in determinist case

d

dt
∇Ψt + Πct

(
∇∇Φt∇Ψt

)
= 0,

becomes
◦dt(∇Ψt) = −Πµt

(
∇∇φi∇Ψt

)
◦ dBt

where µt is a stochastic regular curve and Bt a Brownian motion.
We will not discuss general situation, but only the case P2,∞(T).

Consider SDE on T,

dXt = ∂xφt(Xt) ◦ dBt .

Let dµ = ρ dx and µt = (Xt)#µ; set ρt =
dµt
dx

. Suppose that

{∂xΨt ; t ∈ [0, 1]} is a solution of parallel translations:

dt∂xΨt = −Πρt

(
∂2
xΨt ∂xφt) dBt +

(1

2
RΨt
t −

1

2
SΨt
t

)
dt.
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Let ft = ∂Ψt(Xt). Then by Kunita-Itô-Wentzell formula, we get

dt ft =−
(∫

T
∂xΨt ∂

2
xφt dx

)
ρ̂t(Xt) dBt

− 1

2

(∫
T
∂xΨt ∂

2
xφt dx

)
(∂2

xφt)(Xt)ρ̂t(Xt) dt

− 1

2

(∫
T
∂xΨt ∂x

(
∂2
xφt ∂xφt

)
dx
)
ρ̂t(Xt) dt

+
3

2

(∫
T
∂xΨt ∂

2
xφt dx

)(∫
T
∂2
xφt ρ̂t dx

)
ρ̂t(Xt)dt.

We have ∫
T
∂xΨt ∂

2
xφt dx =

∫
T
ft ×

∂2
xφt
ρt

(Xt) ρ dx ,

∫
T
∂xΨt ∂x

(
∂2
xφt ∂xφt

)
dx =

∫
T
ft ×

∂x(∂2
xφt ∂xφt)

ρt
(Xt) ρ dx .
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We introduce two notations

at =
∂2
xφt
ρt

(Xt), bt =
∂x(∂2

xφt ∂xφt)

ρt
(Xt).

Then {ft ; t ∈ [0, 1]} satisfies the following equation

dt ft =−
(∫

T
ftat ρdx

)
ρ̂t(Xt) dBt −

1

2

(∫
T
ftat ρdx

)(
ρ̂t ∂

2
xφt
)
(Xt) dt

− 1

2

(∫
T
ftbt ρdx

)
ρ̂t(Xt) dt

+
3

2

(∫
T
ftatρdx

)(∫
T
∂2
xφ

2
t ρ̂t dx

)
ρ̂t(Xt) dt

= Λ1(t, ft) dBt + Λ2(t, ft) dt.

As in above section,

||Λ1(t, f )− Λ1(t, g)||L2(ρdx) + ||Λ2(t, f )− Λ2(t, g)||L2(ρdx)

≤ Cφ ||f − g ||L2(ρdx).
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By standard Picard iteration or by SDE on Hilbert spaces, there is
a unique solution {ft ; t ∈ [0, 1]} to above Equation. Define
gt = ft(X

−1
t ). Remark that no SDE directly express X−1

t .

Theorem

Suppose that

∫
T
g0(x)dx = 0, then for any t ∈ [0, 1],∫

T
gt(x) dx = 0.

Proof. Let K̃t =
d(X−1

t )#(dx)

dx
; then by Kunita,

K̃t = exp
(∫ t

0
(∂2

xφs)(Xs) ◦ dBs

)
.

Note that

∫
T
gt(x) dx =

∫
T
ft K̃t dx . We check that

◦dt
∫
T ftK̃tdx = 0.
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Combining all above results, finally we get

Theorem
Let ∂xΨt = gt . Then for µ = ρ dx and µt = (Xt)#(ρdx),
{∂xΨt ; t ∈ [0, 1]} is the parallel translation along the stochastic
regular curve {µt ; t ∈ [0, 1]}, that is, ∂xΨt ∈ T̄µt and∫

T
|∂xΨt |2 µt(dx) =

∫
T
|∂xΨ0|2 ρdx , t ∈ [0, 1].

Brownian motion paths on P2,∞(T) and parallel translations
along them.

Now let φ2k−1(x) =
sin(kx)

k
and φ2k(x) =

− cos(kx)

k
. Consider a

sequence of independent real BM {Bk ; k ≥ 1}.
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For N ≥ 1, let XN
t be the flow associated to

dXN
t =

N∑
k=1

1

αk

(
∂xφ2k−1(XN

t )◦dB2k−1(t)+∂xφ2k(XN
t )◦dB2k(t)

)
,

µNt = (XN
t )#(ρdx), and {∂xΨN

t ; t ∈ [0, 1]} parallel translation
along {µNt ; t ∈ [0, 1]}. Then letting N → +∞,

XN
t → Xt , µNt → µt with µt = (Xt)#(ρdx), and

∂xΨN
t

√
ρNt converges to ∂xΨt

√
ρt in L2(dx).

Theorem
{∂xΨt ; t ∈ [0, 1]} is the parallel translation along the Brownian
motion paths {µt ; t ∈ [0, 1]}, that is, ∂xΨt ∈ T̄µt and∫

T
|∂xΨt |2 µt(dx) =

∫
T
|∂xΨ0|2 ρdx , t ∈ [0, 1].
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